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Abstract: - Since the performance metrics of digital communication systems over composite multipath/ 
lognormal fading channels is intractable, a mixture gamma (MG) fading model is used to approximate 
Nakagami-lognormal (NL) fading model. By using MG fading model, the ergodic capacity of dual-
hop semi-blind amplify-and-forward relaying systems is investigated over independent non-identical 
composite NL fading channels. First, we derived an exact closed-form expression of the ergodic 
capacity for the considered system based on the elementary probability transformation. Then, several 
capacity bounds and one approximate expression are obtained over MG fading channels for the 
purpose of comparison with the above exact analysis. Finally, numerical and simulation results are 
shown to verify the accuracy of the analytical results under different conditions, such as varying 
average signal to noise ratio, fading parameters per hop and the choice of the semi-blind gain. 
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1 Introduction 
Multi-hop relaying transmissions have emerged as a 
promising technique to provide the high data-rate 
coverage and mitigate channel impairments required 
in the wireless communication networks. In such 
networks, the key idea is that one source node 
communicates with one destination node through 
one or several intermediate nodes called relays. In 
the past few years, as an important relay scheme, 
amplify-and-forward (AF) fixed gain systems have 
been paid considerable attention in term of outage 
probability, average bit/symbol error rate for various 
system models and fading channel models, such as 
[1]-[5] and the references therein. Generally, there 
are two main categories of fixed gain relaying 
systems:  blind relay and semi-blind relay. The 
former exploits the fixed relay gain regardless of the 
fading amplitude of the first-hop link, and the latter 
required only statistical channel state information 
(CSI) of the first-hop link. Compared with the 
variable gain AF relaying systems, the latter  are 
low complexity and ease of deployment, and make 
them more attractive from a practical viewpoint. 

Recently, as an important performance metric, 
the ergodic capacity of various AF relaying systems 
with fixed gain has also been an active field of 

research over different fading channels, such as [6]-
[10] and the references therein. In [6], several tight 
bounds of the ergodic capacity for dual-hop fixed 
gain systems is presented based on Steffensen’s, 
Chebyshev’s, and Jensen’s inequality only for 
Rayleigh fading channels. The authors in [7] 
provided a tight closed-form approximation of the 
ergodic capacity exploiting a Taylor series 
expansion for dual-hop fixed gain systems with 
partial relay selection over Nakagami-m fading 
channels. By using the same method as [7], the 
authors in [3] obtained the ergodic capacity for dual-
hop semi-blind AF relaying over arbitrary 
Nakagami-m fading channels. Wu et al. [8] derived 
an upper bound of ergodic capacity for dual-hop 
fixed gain systems using Jensen’s inequality over 
Nakagami-lognormal (NL) fading channels 
approximated using generalized-K (KG) distribution. 
KG distribution is the mixture of Nakgami-m and 
gamma distribution, where gamma distribution 
approximates lognormal distribution. The authors in 
[9] studied generic ergodic capacity bounds for 
dual-hop AF systems with fixed gain relay over 
various fading channels including Nakagami-m, 
Weibull, and KG distributions. Based on the works 
in [9], the authors further investigated the upper and 
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lower bounds of the ergodic capacity for dual-hop 
AF relaying systems with fixed gain relaying over 
NL fading channels by using ࣡ distribution in [10]. 
࣡ distribution is the mixture of Nakgami-m and 
inverse-Gaussian (IG) distribution, where the 
lognormal distribution is approximated by IG 
distribution.  

To the best of our knowledge, no exact closed-
form expression of the ergodic capacity for the dual-
hop AF fixed gain relaying has so far been derived 
over any fading channels. Furthermore, some 
expressions of capacity bounds still keep 
complicated and intractable in the KG and ࣡ fading 
models since their probability density functions 
(PDFs) of average signal to noise ratio (SNR) 
include modified Bessel functions. 

In [11], the authors developed one new approach 
to approximate the NL model by using the mixture 
gamma (MG) distribution. This distribution is 
composed of a weighted sum of gamma distribution, 
and can obtain some exact results by adjusting the 
number of gamma distribution. In [12], we 
compared the end-to-end performance of dual-hop 
variable gain relay systems over NL fading channels 
by using MG and KG distribution, and found it is 
more precise and amenable to approximate the NL 
distribution by using the former than the latter. 

In this paper, we focus on a dual-hop AF fixed 
gain relaying system with semi-blind and analyse its 
ergodic capacity performance over independent 
non-identical composite NL fading channels using 
MG distribution. The main contribution of this 
paper is to derive an exact and novel closed-form 
expression of ergodic capacity and several simple 
capacity bounds. Also, two expressions for the 
parameter Z which describes the semi-blind gain are 
derived by using MG distribution. Finally, 
numerical and simulation results are shown to 
demonstrate the validity of the proposed analysis. 

This paper is organized as follows. Section 2 
describes the system and channel models. In section 
3, some expressions of the ergodic capacity for the 
dual-hop fixed gain system are obtained. The 
performance evaluations and conclusions are 
presented in section 4 and 5, respectively. 
 
 

2 System and Channel Models 
We consider a wireless dual-hop AF fixed gain 
relaying system over composite NL fading channels. 
The source node (S) communicates with the 
destination node (D) via a relaying node (R).The 
whole transmission is divided into two phases. In 
the first phase, S only transmits its signals to R. In 
the second phase, R amplifies the received signals 

by a gain factor β and then forwards their amplified 
versions to D. Without loss of generality, we assume 
that the average powers of S and R are normalized 
to unity. If β is selected according to the fixed relay 
gain, which is defined as β2= 1/ZN0 as in [1]. Thus, 
the instantaneous end-to-end SNR, γSRD, at the 
destination can be expressed as in [1] 
 

1 2 2( )SRD Z     ,                                            (1) 

 
where γi=ρ|hi|

2 is the instantaneous SNR of the ith-
hop link, |hi| is the fading amplitude of the ith-hop 
link, iÎ(1,2), ρ=1/N0 denotes the un-faded SNR, N0 
is the power of the additive white Gaussian noise 
(AWGN) component, Z is a constant for a fixed gain 
β. Then, ̅ߛ௜ ൌ Eሾ|݄௜|ଶሿߩ ൌ Ω௜ߩ  denotes the average 
SNR of the ith-hop link, E[•] is the statistical 
expectation, Ωi denotes the average power of the 
fading channels. Due to assuming that the ith-hop 
link experiences NL fading, γi is a composite 
Gamma-lognormal distribution variable with the 
PDF approximated by [11], as 
 

ఊ݂೔ሺݔሻ ൌ ∑ ௝ܶݔ௠೔ିଵ݁݌ݔ	ሺെܯ௝ݔሻ
ே
௝ୀଵ ,                       (2) 

 
where ௝ܶ ൌ ௝ܿ ௝ܽ ⁄௠೔ߩ2 , ௝ܯ	 ൌ ௝ܾ ⁄ߩ , ௝ܿ ൌ ߨ√ ∑ ௝ݓ

ே
௝ୀଵൗ  is 

the normalization factor, ௝ܾ ൌ ݉௜ ௝ݐ௜ߣെ൫√2ൣ݌ݔ݁ ൅
௜൯൧ߤ  ௝ܽ ൌ 	2݉௜

௠೔ݓ௝ ௝ݐ௜ߣെ݉௜൫√2ൣ݌ݔ݁ ൅ ௜൯൧ߤ ⁄ߨ√ Γሺ݉௜ሻ	 , 
mi is fading parameter in Nakagami-m fading and is 
integer, μi and λi are the mean and the standard 
deviation of lognormal shadowing, respectively, μi 
=lnΩi, λi =(ln10/10)σi, σi denotes the standard 
deviation in dB. wj and tj are abscissas and weight 
factors for Gaussian-Hermite integration, wj and tj 
for different N are available in [13, Table(25.10)]. 
Eq.(2) can describe various fading and shadowing 
models by using different value of m and/or σ. For 
example, for m=1, it can represent Rayleigh-
lognormal fading. For σ=0, it reduces to the well-
known Nakagami-m or Rayleigh (m=1) fading. 
 
 

3 Ergodic Capacity Analysis 
 
3.1 Exact Analysis 
For a dual-hop AF fixed gain system, the ergodic 
capacity can be obtained as 
 

 ln 1 ,SRDC     Ε                                                (3) 

 
where ∆=1/2ln2. The reason of the 1/2 factor is that 
we need two orthogonal channels or two time slots 
for transmitting the data in a dual-hop system. 
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Since an exact closed-form expression in (3) 
over MG fading channels is not mathematically 
tractable by directly using a traditional approach 
(i.e., finding the PDF of γSRD), we thus restructure (3) 
as in [6] 
 

   
1 2

1 2 2

I I

{ [ln 1 (1 ) ] [ln 1 ]}.C Z Z       E E 
    (4) 

 

In order to find the closed-form expression of (4), 
we must obtain the closed-form expressions of I1 
and I2. Here, we let X=γ2/Z, Y=1+γ1, U=XY. Thus, 
the key problem is to find the PDFs of variables X, Y 
and U, respectively. With the help of (2) and using 
the variable transform method, the PDFs of X and Y 
can be obtained, respectively, as 
 

2 2 1

1
exp( ),( )

N m m
j jjX T Z x ZM xf x 


                     (5) 

1 1

1
exp( )( 1) exp( ( ).)

N m
i i iY i

T M y M yf y 


            (6) 

 
Then, by using (5), the closed-form expression of 

I2 can be written as 
 

 
2 2

2 0

1

1 0

I [ln 1 ] ln(1 ) ( )

ln(1 )exp( ) .

X

N m m
j jj

X x f x dx

T Z x x ZM x dx



 


   

  


 

E             (7) 

 
By expressing lnሺ1 ൅ ሻݔ ൌ Gଶ,ଶ

ଵ,ଶሾݔ|ଵ,଴
ଵ,ଵሿ end	expሺെݔሻ 

ൌ G଴,ଵ
ଵ,଴ሾݔ|଴

ିሿ in (7) as a Meijer’s G function defined in 
[14, Eq.(01.04.26.0003.01)] and [14, Eq.(01.03.26. 
0004.01)], respectively, and using Eq.(07.34.21. 
0011.01) in [14], eq.(7) can be rewritten as 
 

2

3,1 0,1
2 2,3 ,0,01

I [ ],
N

j j mj
R G ZM


                                     (8) 

 
where 2/ 2j j j

m
jR c a b , G[•|•] is the Meijer’s G-function. 

In the following, for the sake of finding the PDF 
of U, we let V=X as an auxiliary variable. Due to the 
fact of the independence between γ1 and γ2, X and Y 
are also independent each other. Thus, by using 
Jacobian determinant, we can obtain the composite 
PDF of variables V and U as 
 

( , ) ( ) ( ) .UV X Yf u v f v f u v v                              (9) 

 
By using (5) and (6), and the binomial expansion 

defined in [15, Eq.(1.111)] when mi is integer, and 
with the aid of Eq.(6.621.3) in [15], the PDF of U 
can be written as 
 

1 1 21

2 1

1 2

2 1

0

1 ( ) 21

( ) 21
1 1 0

( ) 2

( ) ( , )

2 ( 1)

(exp( )) ( )

 (2 ),           

U UV

m m m kkmN N
k i j

m m k
i j k i j i

m m k
m m k i j

f u f u v dv

C TT Z

M M M

u K ZM M u



  

 
  

 
 










   (10) 

 
where ! [( )! !]j

iC j j i i  , K(•) is the second kind 

modified Bessel function of order . 
Then, by expressing (2 )vK x  2,0       

0,2 /2, /2[ | ] / 2v vG x 
  

as a Meijer’s G function defined in [14, Eq.(03. 
04.26.0009.01)], and similar as (8), the closed-form 
expression of I1 can be obtained as 
 

1

2

1

1

11

,1
1

4,1 0,1
1 2,4 , 0

0
0,

1

I [
( 1)

.
(exp( ))

]
mkmN N
k i j

i m kk
i j k i i

j mG Z
C R

M
M

R
M

M



 
  


  (11) 

 
Finally, by substituting (11) and (8) into (4), we 

can obtain the exact closed-form expression of the 
ergodic capacity for the dual-hop fixed gain system 
over MG fading channels. To the best of our 
knowledge, this result is novel. 

As special cases, when the dual-hop system 
experiences Nakagami-m fading, the exact closed-
form expressions of the ergodic capacity for the 
dual-hop fixed gain system can be obtained with the 
aid of the above analysis as 
 

2

1

2

1

1

4,1 0,11
2,4 1 2 , 0,0

1

3,1 0,1

2,

11
1

1 2 ,
0 1 1 2

23 2 ,0 0 2,

exp( )( 1)

( ) ( ) ( )

(

{ [

)

]

[ ] }.

N m

m km
k

k

m

mk
k

C m
m m

m m m

m m

C G Z

G Z


 










 




 

 (12) 

 
When mi=1, eq.(12) can be reduced to the case of 

Rayleigh, as 
 

,0
4,1 0,1 3,1 0,1

1 2,4 1 2 1,1 ,0 2,3 2 1,0,0{exp(1 ) [ ] [ ]}.RC G Z G Z      (13) 

 
3.2 Capacity Bounds Analysis 
Recently, the ergodic capacity bounds of dual-hop 
system have been widely investigated over different 
fading channels. For the purpose of comparison with 
the above exact analysis, we will give the ergodic 
capacity bounds analysis for the considered system 
over MG fading channels in this section. 
 
3.2.1 The lower bound 
From [9], the lower ergodic capacity bound for 
dual-hop AF fixed gain system can be given by 
 

1 2 2ln[1 exp( [ln ] [ln ] [ln( )])].lC Z       E E E  (14) 
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To evaluate the lower bound in (14), we need to 
derive closed-form expressions for E[lngi] and 
E[ln(Z+g2)] over MG fading channels, respectively. 
To this purpose, the first term E[lngi] can be 
computed by using (2) as 
 

1

1 0
[ln ] ln exp( ) .i

N m
i j jj

T x x M x dx
 


  E           (15) 

 
With the help of the integration relationship [15, 

Eq.(4.352.1] and some simple algebraic 
manipulations, (15) can rewritten as 
 

1
[ln ] ( ) ( ) ln ,

N

i i j i jj
m R m M 


  E                       (16) 

 
where y(•) is the psi function. 

Additionally, with the help of the integration 
relationship [15, Eq.(4.352.1] and similar as (7), the 
second term E[ln(Z+g2)] can be obtained as 
 

2

2

1
2 1 0

3,1 0,1
2,3 ,0,01

[ln( )] ln( )exp( )

        ln [ ].

N m
j jj

N

j j mj

Z T x Z x M x dx

Z R G ZM


 





   

 

 


E  (17) 

 
By substituting (16) and (17) into (14), we can 

obtain the lower bound of the ergodic capacity for 
the dual-hop fixed gain system over MG fading 
channels. 

 
3.2.2 The upper bound 
From [8] and [9], the upper ergodic capacity bound 
for dual-hop AF fixed gain system by using Jensen’s 
inequality can be given by 
 

1 1 2 2ln[1 [ ] [ ( )]]uC Z     E E .                  (18) 

 
To evaluate the upper bound in (18), we need to 

derive closed-form expressions for E[g1] and 
E[g2/(Z+g2)] over MG fading channels. To this 
purpose, the first term E[g1] can be easily obtained 
by using (2) as 
 

1 1
1 11

[ ] ( 1)
N m

i ii
T m M 


  E .                           (19) 

 
Similarly, with the aid of [15, Eq.(3.383.10)], the 

second term E[g2/(Z+g2)] can be expressed as 
 

2

2

1
2 2 1 0

2 21

[ ( )] ( ) exp( )

            exp(Z ) ( 1) ( ,Z )

N m
j jj

N m
j j jj

z T x z x M x dx

T Z M m m M

 
 





   

    

 


E . (20) 

 
where Γ(•,•) is the incomplete gamma function. 

Then, by substituting (19) and (20) into (18), we 
can obtain the first upper bound of the ergodic 
capacity for the dual-hop AF fixed gain system by 
using Jensen’s inequality over MG fading channels. 

Additionally, in order to improve the poor 
performance in (18) in the high SNR regions, a new 
alternative upper bound is given as in [9] 
 

1 1 1
2 1 2 1

1 2 2

ln[1 [ ] [ ] [ ]]

[ln ln ln( )]

uC Z

Z

  
  

     
   

E E E

E
.           (21) 

 
From (21), we only need to obtain the closed-

form expression of E[gi
-1]. Similar as (19), the first 

negative moment of gi is given by 
 

11

1
[ ] ( 1) i

N m
i j i jj

T m M 


  E .                           (22) 

 
Noted that (22) is unavailable when mi=1. As a 

special case, we have to loose the integral limit and 
obtain the approximate expression of (22). This 
approximate result is proved to be correct in high 
SNR regions in section 4. When mi=1, eq.(22) can 
be approximated by using eq.(3.351.5) in [15] as 
 

1 1

1 0

1

1 11

[ ] exp( )

  exp( ) ( Ei( ))

N

i j jj

N N

j j j jj j

T x M x dx

T x M x dx T M


 



 
 

 

    

 
 

E . (23) 

 
where Ei(•) is the exponential integral function. 

Finally, by using (16), (17) and (22), and 
substituting them into (21), we can obtain the 
second upper bound of the ergodic capacity for the 
dual-hop AF fixed gain system over MG fading 
channels. 
 
3.3 Capacity Approximation Analysis 

In [3] and [7], a tight approximation of the 
ergodic capacity for dual-hop fixed gain systems are 
adopted based on a Taylor series expansion of 
logଶሺ1 ൅  ሻ. It can be expressed as in [7]ߛ

 
2 2

2

[ ] [ ]
ln[1 [ ]]

2(1 [ ])

SRD SRD
app SRD

SRD

C
 




 
      

E E
E

E
.      (24) 

 
For (24), we need to find the first and the second 

moments of gSRD. Then, the nth moment of gSRD 
must be obtained. Using (1), it can be expressed as 

 

1 2

1 2

0 0
2

[ ] ( ) ( )
n

n
SRD f x f y dxdy

Z  
 


   
   
 E .          (25) 
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Due to the independence between γ1 and γ2, two 
integrals in (25) can be calculated, respectively. By 
using (2) and after some algebraic manipulations, 
eq.(25) can be rewritten in closed-form as 
 

2

221

12,1
1,

1

1 1
2 ,0[ ] [ ]

( )

( )
m n

N N
n
S

i
RD j m

j

m n
i j

m
i

G Z
TT m n

M n
M

Z
  


 


 
E .       (26) 

 
Thus, the closed-form expression of appC  can be 

obtained by setting n=1 and 2 in (26) and 
substituting them into (24). 
 
3.4 The choice of the semi-blind gain 
For the dual-hop fixed gain system, the semi-blind 
gain is determined by the channel statistics at the 
first hop. In general, there are two major schemes to 
calculate the relay gain as in [3]. In the first scheme, 
the fixed-gain relaying factor β is chosen equal to 
the average of channel state information assisted 
gain as β2=rE[1/(g1+1). Since the first-hop link 
undergoes MG fading, the constant Z is given by 
 

  1

1 1 11
exp( ) ( ) (1 , ) .

N

i i ii
Z T M m m M




           (27) 

 
In the second scheme, the fixed-gain relaying 

factor β is chosen as β2=r/(E[g1]+1). Thus, the 
constant Z is determined by the average SNR of the 
first-hop, and obtained as 
 

2 1 11
1 1 ( 1)

N

j jj
Z R m M


      .            (28) 

 
 

4 Numerical and Simulation Results 
In this section, we present some numerical and 
simulation results to evaluate the ergodic capacity of 
the dual hop AF fixed gain system by using the MG 
distribution. 

Fig.1 and Fig.2 illustrate the ergodic capacity for 
the dual-hop AF fixed gain system versus the un-
faded SNR (ρ) under different fading scenarios. 
Without loss of generality, we assume Ω1=Ω2=5, 
N=10 for MG distribution. As expected, the ergodic 
capacity increases with increasing ρ from these 
figures. Fig.1 shows the impact of multipath 
parameters (m) on ergodic capacity. It can be seen 
that the ergodic capacity increases with increasing 
mi (i=1, 2), whereas, the effect of mi on capacity 
becomes weaker when mi becomes larger. Fig.2 
shows the impact of shadowing parameters (σ) on 
ergodic capacity. As expected, the ergodic capacity 
decreases with increasing σi. Compared with the 
exact analysis, the lower bound in (14) and the 

upper bound in (21) get tighter in medium and high 
SNR regions, and the upper bound in (18) keeps 
loose in entire range of SNR. However, the upper 
bound in (18) and the approximation in (24) show 
tighter in light fading environments, for example, 
smaller σ or larger m. At the same time, it is clear 
that they match well between our exact analytical 
expression and simulations over entire range of ρ. 
 

 
 

Fig.1 Ergodic capacity for the dual-hop AF fixed gain system versus the 
unfaded SNR (ρ) with σ1=σ2=4dB and Z1 
 

 
 

Fig.2 Ergodic capacity for the dual-hop AF fixed gain system versus the 
unfaded SNR (ρ) with m1=m2=2 and Z2 

 
In Fig.3, we show the impact of the semi-blind 

gain factor (Z) and the fading parameter (Ω) on the 
ergodic capacity for the dual-hop system, where 
Ω2=10. For the choice of semi-blind gain factor, the 
case using Z1 in (27) shows better performance than 
the case using Z2 in (28). For the change of fading 
parameter (Ω), it shows better performance when 
the value of Ω in the first hop is larger than that in 
the second hop. These results can be explained from 
two points. One is the fact that for the dual-hop 
fixed gain system, the end-to-end performance is 
dominated by the first-hop channel conditions. The 
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other is the fact that the calculation of the fixed-gain 
in (27) and (28) differs in the position of the 
expectation operator. The case using Z1 averages the 
received signal-plus-noise power, and the case using 
Z2 only averages the received signal power, such 
that Z2 is always greater than Z1. 
 

 
 

Fig.3 Ergodic capacity for the dual-hop AF fixed gain system versus the 
unfaded SNR (ρ) with m1=m2=2 and σ1=σ2=4dB 

 
 

5 Conclusion 
In this paper, we investigated the ergodic capacity 
of a dual-hop AF wireless communication system 
with fixed gain relays over the composite NL fading 
channels approximated by using MG distribution. 
Based on MG fading models, an exact closed-form 
expression and several bounds of ergodic capacity 
for the dual-hop AF fixed gain system are derived, 
respectively. Then, we showed numerical and 
simulation results to verify the accuracy of the 
analytical results, and discussed the effect of the 
fading parameters and the semi-blind gain factor on 
the ergodic capacity of the dual-hop system. These 
works in this paper can be helpful to analyse the 
performance of cooperative relaying systems over 
composite fading channels in the future. 
 
 
References: 
[1] M. O. Hasna and M. S. Alouini, A performance 

study of dual hop transmissions with fixed gain 
relays, IEEE Trans. Wireless Commun., Vol. 3, 
No. 6, Nov. 2004, pp. 1963-1968. 

[2] H. Shin and J. B. Song, MRC analysis of 
cooperative diversity with fixed-gain relays in 
Nakagami-m fading channels, IEEE Trans. 
Wireless Commun., Vol. 7, No. 6, Jun. 2008, pp. 
2069–2074. 

[3]  M. Xia, C. Xing, Y. C. Wu , S. Aïssa, Exact 
performance analysis of dual-hop semi-blind 

AF relaying over arbitrary Nakagami-m fading 
channels, IEEE Trans. on Wireless Commun., 
Vol.10, No.10, Oct. 2011, pp.3449 – 3459. 

[4] S.  B. Osamah    and  K. Michel  , Performance  
analysis  of  dual-hop  systems  with  fixed gain 
relays  over  Generalized h-m Fading  Channels, 
IEEE Globecom, 2012, pp.4148-4152. 

[5] Omer Waqar, Muhammad Ali Imran and 
Mehrdad Dianati, On the error analysis of 
fixed-gain relay networks over composite 
multipath/shadowing channels, IEEE 77th VTC 
(Spring), June 2-5, 2013, pp.1-5. 

[6] O. Waqar, M. Ghogho, and D. McLernon, 
Tight bounds for ergodic capacity of dual-hop 
fixed-gain relay networks under Rayleigh 
fading, IEEE Commun. Letter, Vol. 15, No. 4, 
Apr. 2011, pp. 413–415. 

[7] D. B. da Costa and S. Aïssa, Capacity analysis 
of cooperative systems with relay selection in 
Nakagami-m fading, IEEE Commun. Lett., Vol. 
13, No. 9, Sep. 2009, pp. 637–639. 

[8] L.Wu, K. Niu, Z. He, W. Xu, and J. Lin, 
Ergodic capacity of dual-hop transmissions 
over composite multipath/shadowing channels, 
IET Electron. Letter, Vol.45, No.19, 2009, pp. 
975-976. 

[9] C. Zhong, M. Matthaiou, G. K. Karagiannidis, 
and T. Ratnarajah, Generic ergodic capacity 
bounds for fixed-gain AF dual-hop relaying 
systems, IEEE Trans. on Veh. Technol., Vol.60, 
No.8, Oct., 2011, pp. 3814-3824. 

[10] C. Zhong, M. Matthaiou, G. K. Karagiannidis, 
A. Huang, and Z. Zhang, Capacity bounds for 
AF dual-hop relaying in ࣡  fading channels, 
IEEE Trans. on Veh. Technol., Vol. 61, No.4, 
May 2012, pp.1730-1740. 

[11] S. Atapattu, C. Tellambura, and H. Jiang, 
Representation of composite fading and 
shadowing distributions by using mixtures of 
gamma distributions, Proc. IEEE Wireless 
Commun. Network. Conf., 2010, pp.1-5. 

[12] W. Cheng, Performance analysis and 
comparison of dual-hop amplify-and-forward 
relaying over mixture gamma and generalized-
K fading channels, Proceedings of WCSP’2013, 
Hangzhou, China, Oct. 24-26, 2013, pp.1-6. 

[13] M. Abramowitz, and I. A. Stegun, Handbook of 
Mathematical Functions: With Formulas, 
Graphs, and Mathematical Tables. Dover 
Publications, 1965. 

[14] The Wolfram functions site. URL 
http://functions.wolfram.com. 

[15] I. S. Gradshteyn, and I. M. Ryzhik, Table of 
Integrals, Series, and Products, 6th Edition. 
New York: Academic; 2000. 

-5 0 5 10 15 20
0

1

2

3

4



 

 

 Exact Analysis
 Simulation
 Eq.(14)
 Eq.(21)

m
1
=m

2
=2 dB

SNR () dB

E
rg

od
ic

 C
ap

a
ci

ty
 (

b
ps

/H
z)



WSEAS TRANSACTIONS on COMMUNICATIONS Weijun Cheng, Yan Huang

E-ISSN: 2224-2864 16 Volume 14, 2015




